雨の速度はなぜ一定になるのか?すぐわかる!微積8


77dc33b83c6a0a064199bc57caa959d7_s

高校物理と微分積分について

高校物理の検定教科書では微積を使わないで説明がなされています。数学の進度の関係もあるため、そのようになっていますが微積をつかって考えたほうがスッキリとわかりやすく説明できることも多くあります。

このコーナーでは、微積を使ったほうが良い範囲について、一つひとつ説明をしていこうと思います。今回は空気抵抗がはたらく場合の運動について見てみましょう。

空気抵抗の入った落下運動

まずはじめに最も簡単なモデルである、速さに比例する空気抵抗kvが働く場合について今回は考えます。雨粒が上空から落下してくる様子をイメージしてみましょう。

スクリーンショット 2015-07-10 13.10.35

 加速度を微分すると、落下する物体に働く合力はmg−kvと表されますので、運動方程式を作ると次のようになります。

スクリーンショット 2015-07-10 13.10.40

 ここで高校入試の問題としては、終端速度を問う問題がでます。はじめは速度が小さいので、kvの値は小さくなり加速をします①。しかし速度が増えると、kvの値が大きくなり、加速度も小さくなります②。そして最終的にはkvとmgがつりあいます。

スクリーンショット 2015-07-10 13.10.46

 このことから終端速度は、

スクリーンショット 2015-07-10 13.12.37

 と表されます。

ただ、一体どのようにして速度がmg/kに近づいていくのでしょうか。微積を使って、確かめてみたいと思います。

運動方程式の変数はvなので、変数分離すると、

<両辺をkで割る>

スクリーンショット 2015-07-10 13.12.55

< − をかける>

スクリーンショット 2015-07-10 13.13.16

<スクリーンショット 2015-07-10 13.13.49で割る>

スクリーンショット 2015-07-10 13.13.22

両辺を時間tで積分します。

スクリーンショット 2015-07-10 13.14.07

この数式の一般解を求めると、

スクリーンショット 2015-07-10 13.14.30

 ここで、時刻0のときの速度をv0とすると、式①より

スクリーンショット 2015-07-10 13.15.33

となります。これで積分定数Cが決まりました。これを式①に代入すると、次のようになります。

スクリーンショット 2015-07-10 13.15.37

ここで、式②の右辺の−mg/k+v0<0のとき、つまり初速度v0がmg/kよりも小さい場合には、

スクリーンショット 2015-07-10 13.17.35

 これをグラフにすると、

スクリーンショット 2015-07-10 13.17.56

 このよになります。時刻0のときの速度は、先ほどだしたので当たり前ですが、

スクリーンショット 2015-07-10 13.18.00

 また時間が無限大のときの速度、終端速度は

スクリーンショット 2015-07-10 13.18.05

 となります。これらをグラフに記入すると、

スクリーンショット 2015-07-10 13.18.36

 これが雨粒の落下の様子をしめします。雨粒は時刻0では初速度v0、そのときの傾きgで落下します。しかし空気抵抗の影響をうけると、徐々に速度が減っていき、最終的にはある一定の速度に落ち着きます。このとき、重力と空気抵抗がつりあっている状態です。

スクリーンショット 2015-07-10 13.10.46

 このような空気抵抗のある問題は入試問題では、終端速度を釣り合いの式から出すような問題以外は、あまり出題されることはないのですが、微積分を使うことにより、その落下の様子をイメージすることができて面白いですよね。

拙著「高校物理復習帳」では、もし空気抵抗がなかったら雨はどうなるのか?私達は外を歩くことができるのか?についても考えています。もしよかったら読んでみてください(^^)

 次回は、式②の右辺の−mg/k+v0>0のとき、つまり初速度v0がmg/kよりも大きい場合にはどのようになるのか考えてみましょう。これは小さな天体などが地球に衝突したときの様子になります。

ご質問はありませんか?お答えします。

・ご感想・ご質問はこちらまでどうぞ。ブログにて回答させていただきます。

科学のネタから出た本はこちらです。運営者に関してはこちらからどうぞ。

・メールマガジンはブログでは載せられない情報を配信しています。


 

・フェイスブックやツイッターでは更新情報を配信しています。


動画授業をはじめました。


[adsense]