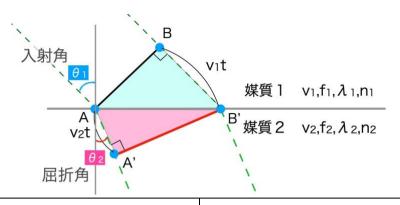

○ 屈折の公式とその導出


屈折率 n や速度 v が境界面で変わると、どれくらいの角度 θ 曲がるのでしょうか。そんな量の関係を表したのが屈折の法則です。ここではより一般化するために、真空ではないある媒質 1 (屈折率 n_1)から他の媒質 2 (屈折率 n_2)で光が曲がる場合を考えます。とりあえず $n_1 < n_2$ として作図をしてみましょう。

このとき、それぞれの物理量を n_1,n_2,c,λ ,f を使って表すと…

	真空(空気)	媒質1	媒質 2
屈折率	n=1	n_1	n ₂
速さ	v=c	v ₁ =()①	v ₂ =()(2)
波長	λ	λ 1=()	λ ₂ =()
振動数	f	f ₁ =()	f ₂ =()

 $v_1,v_2,\theta_1,\theta_2$ とまずは結びつけていきましょう。その後、波長や屈折率との関係を見ていきます。 さて、どこに注目すればよいのでしょうか。

三角形 ABB'について、

$$\sin \theta_1 = 3$$

三角形 AA'B'について、

$$\sin \theta_2 = 4$$

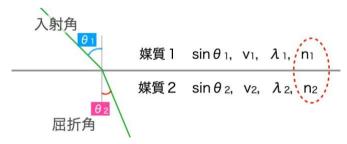
3(4) より

$$\frac{\sin \theta}{\sin \theta} = \dots A$$

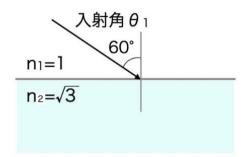
また $v=f \lambda$ より、

$$\frac{\mathbf{v_1}}{\mathbf{v_2}} = \dots B$$

表の①、②より


$$\frac{v_1}{v_2} = \dots$$

屈折の公式 A・B・Cより、


$$\frac{\sin \theta}{\sin \theta}_{1} = = = = n_{12}$$

ここで、 $\frac{n_2}{n_1}$ は「<u>媒質1に対する</u>媒質2の屈折率」を表しており、 n_{12} ()といいます。特に媒質1が真空や空気の場合(n_1 =1)、 $n_{12}=\frac{n_2}{1}=n_2$ となり、このときの屈折率を() 屈折率といいます(今まで説明してきた、真空に対する屈折率のこと)。

ただし屈折率は逆なので、覚えるときには注意!

問題 図のように空気中からある物質(屈折率√3)へ光が入射したとき、屈折光の様子を作図しなさい。

