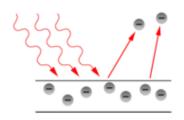
○ 今までの物理がうまく説明できない現象が発見される!

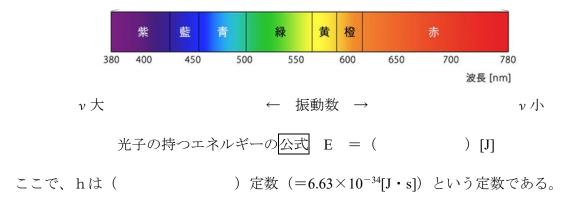

18世紀中程まで、あらゆる物体の運動は今まで高校で学習をしてきた<u>『古典力学』(ニュートン力学)</u>で説明できると考えられていた。しかし放射熱や原子レベルのミクロな世界については<u>古典力学では説明できないことがわかってきた</u>。例えば古典力学では光は () だと思われてきた。しかし、19世紀に入り光が () としての性質を示す<u>決定的な証拠</u>となる現象が発見された!

これから光について扱います。

復習	習 波の式	v = ()		
ć	光波の場合	c = () *	・ 光の速さ c = () m/s
*	光だけは特	特別で、速度/	はc、振動	効数は()とい	う文字をあてる

○ 金属に光を当てると電子が飛び出す現象(

金属に光をあてると、電子が金属から飛び出してくるという物理現象が発見された。光を明るくすれば電子がたくさん飛び出してくるのか?と考えられるが、そう単純ではなかった。 いろいろな種類の光や明るさを変える実験をすると、次のようなことがわかる。



- A どんなに**明るい光**をあてても、波長の () 光 (赤) では光電効果は起こらない。
- B 暗い光であっても、波長の () 光 (紫) だと光電効果が起こる。
- C 波長の短い光で光電効果を起こしておき、光をさらに<u>明るくする</u>と、たくさんの電子が飛び出してくる。

光電効果のこの不思議な現象について、アインシュタインが光は波の性質ももつが、同時に () の性質も持っていると仮設を立てて、光電効果の現象について見事に説明した。

○ 光電効果に対するアインシュタインの説明!

光は粒子のように振る舞う(これを()と呼ぶ)と考えて、光子の持つエネルギーは、その光の()に比例していると仮定すると、AとBの現象は説明できると考えた。

○ 光電効果の原理のアインシュタインの説明 (光量子仮説という)

光子と電子は、1粒と1個で衝突すると仮定してみる。

金属表面

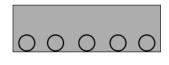
エネルギーの収支の式 ** ここで、Wは()という。 W:電子が金属表面から飛び出すのに必要な最低限のエネルギー

実際に**同じ光**で実験をしてみると、金属表面から飛び出す電子の速度(=運動エネルギー)は<u>遅いものもあれば速いものもある</u>。このエネルギーの式の電子の運動エネルギー $\frac{1}{2}mv_{max}^2$ は、飛び出た電子の中で最大の運動エネルギーを決めるものであることに注意!

○ アインシュタインの考えで A~C の現象を考えてみると…

Aの答え

Bの答え


Cの答え


振動数が小さくて明るい 振動数が大きくて暗い 振動数が大きくて明るい

 $h \nu_{\perp} < W$

ポイント:明るい光というのは、光子の数が(

) ということ。**光子1つ1つの**

持つエネルギーとは関係がない。